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ABSTRACT

In industrial experimentation it is frequently true that a large

proportion of process variation is associated with a small proportion of the

process variables. In such circumstances of "effect sparsity" unreplicated

fractional designs have frequently been effective in isolating preponderant

factors. A very useful graphical analysis for such experiments due to

Cuthbert Daniel (1959) employs normal probability plotting. A more formal

analysis is presented here which might be used to supplement such plots.

AMS (MOS) Subject Classifications: 62K15

Key Words: Fractional factorials, effect sparsity, normal plotting,
Bayesian analysis, robust samples,

Work Unit Number 4 (Statistics and Probability)
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SIGNIFICANCE AND EXPLANATION

Unreplicated fractional factorial designs are frequently employed as

screening designs when it is believed that a condition of effect sparsity will

ensure that only a few of the possible effects are likely to be large. A

Bayesian analysis is proposed to supplement the graphical technique currently

employed for analysis of fractional factorials. In the proposed analysis, the

posterior probability that each orthogonal contrast measures a real effect is

computed. Sensitivity of the analysis to the assumed frequency and size of

large effects is explored through several examples.

The responsibility for the wording and views expressed in this descril-ive
summary lies with MRC, and not with the authors of this report.
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STUDIES IN QUALITY IMPROVEMENT II: AN ANALYSIS
FOR UNREPLICATED FRACTIONAL FACTORIALS

George E. P. Box and R. Daniel Meyer

1. INTRODUCTION

The possible importance of fractional factorial designs in industrial

applications seems to have been first recognized some 50 years ago (Tippett

(1934), see also Fisher (1966) p. 88). Tippett successfully employed a 125th

fraction of a 55 factorial as a screening design to discover the cause of

difficulties in a cotton spinning machine. A general theory for fractional

factorial designs was worked out by Finney (1945) and Rao (1947) and other

orthogonal arrays which were not, in general, fractional factorials, were

introduced by Plackett and Burman (1946). These designs produce confounding

of effects of various orders but, as in Tippett's application, their

industrial use (see also, for example, Davies (1954); Box and Hunter (1961);

Daniel (1959, 1976)) has usually rested on an implicit hypothesis of what we

will call effect sparsity. This hypothesis is that in relation to the noise

only a small proportion of the effects will be large and the majority will be

negligible. The former will be called "active" effects, the remainder "inert"

effects. The hypothesis of effect sparsity is associated with the notion that

a large proportion of process variation is explained by a small proportion of

the process variables. The effect sparsity hypothesis has implications both

for design and analysis.

Concerning the design aspect, consider, for example, an experimenter who

desired to screen eight factors at two levels, believing that not more than

three would be active. He might choose to employ a sixteenth replicate of a
8-4

28 design of resolution four. This 2 design has the property that every
IV

one of its = 56 projections into three-space is a duplicated 23
S3
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factorial. Its use would thus ensure that the design provided a duplicated 2

factorial in any set of three variables that happened to be active. Obviously

such applications employ some guesswork concerning the likely degree of effect

* sparsity. However, in the situation where experimentation is sequential, a

fractional design may be regarded potentially as a first building block in a

process of sequential assembly (Box (1982)). Thus, where necessary,

additional runs or additional fractions may be combined with the original

* design to resolve ambiguities (see for example, Box and Hunter (1961); Box,

Hunter and Hunter (1978)).

The analysis of fractional factorials and other design arrays can be

thought of as involving two distinct stages. In the first stage we attempt to

- identify certain contrasts which are unlikely to be due to noise and hence

deserve interpretation. In the second stage we attempt to associate these

contrasts which are believed to be active with specific factors and

interactions between factors. Thus in the analysis of a 2-level fractional

factorial involving factors A,B,C and D a particular contrast identified as

unlikely to be explained by noise might estimate an aliased combination of

interactions such as (AB + CD). In practice the ambiguity posed by the

apparent activity of such an "alias string" must usually be resolved by

further experimentation or occasionally and more dubiously by an appeal to

technical knowledge. In this paper we are concerned only with the first

problem, that of attempting to identify active contrasts. In what follows we

refer to the mean value of an active contrast as an "effect" bearing in mind

that depending on how complicated is the model that we have in mind such an

effect may correspond with an alias string.

Some of the techniques which have been employed to identify active

effects are as follows.
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When an estimate of the experimental error variance is available from

relevant genuinely replicated runs from current or past experimentation,

subject to allowance for selection of the largest contrasts, analysis of

variance techniques may be used to judge the reality of estimated effects.

For umreplicated experiments, contrasts associated with supposedly inert

higher-order interactions are often used to estimate error variance. This

method is however sometimes unsatisfactory because the required inert

contrasts may be difficult or impossible to identify.

A. even less satisfactory procedure for estimating the experimental error

variance employs successive pooling of supposedly nonsignificant components.

A very useful graphical technique due to Daniel (1959) has the advantages

that it does not require prior identification of inert contrasts and allows

for selection automatically. In this method the empirical cumulative

distribution of the estimated effects is plotted on normal probability

paper. In the circumstance of effect sparsity, inert effects tend to fall

roiubly along a straight line through the origin while active effects tend to

appear as extreme points falling off the line.

The purpose of the present paper is to present a more formal analysis

approoriate to the circumstance of effect sparsity. We advance this as a

possibly useful adjunct to the graphical procedures. Plotting is always

valuable and in particular can suggest model inadequacies (see Daniel (1959)).

* . AN ANALYSLS FOR UNREPLICATED DESIGNS

::p-<se triat an effect T (i = 1,...,v) is active with probability a,1

2
arU the active r are i.i.d. N(O, T). Let T = (Ti,...,T ) be the V1

9 estljnuted effects obtained in the usual way from some orthogonal array and

, r(u'-s:;ary, standardized so that, given T, they all have the same
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(unknown) variance 2  That is, for an inert effect, Ti = ei; for an

2
active effect, Ti = Ti + ei; and the error terms ei  are i.i.d. N(0,02).

If we let k2 = (a + F2)/a2'then Ti,...,T V  are i.i.d. from the scale-

contaminated normal distribution denoted by (1 - a)N(O,0 2) + aN(O,k2 a 2

Let a(r) be the event that a particular set of r of the V effects

are active, and let T(r) be the vector of estimated effects corresponding to

active effects of a(r) . Ther (Box and Tiao, 1968), with p(log a) locally

uniform, the posterior probability that T(r) comprises the active effects is

-1r

p(a(r)lT,',k) a [1 - Of(r) (1)

2a
1 -rIwee ~ --- an f Twhere2 2 2 and fr) (r)T(r)/TT is the fraction of the

T

sum of squares associated with T(r

2.1 The Probability That An Effect Is Active

In particular, the marginal probability pi that an effect i is active

given T, a and k is

pi p(a(r)IT,a,k) . (2)
(r):i active

In general, to compute pi for i = 1,...,v, the probabilities (1) must be

computed for all 2 possible events a(r).

3. CHOOSING a and k

The above analysis makes use of parameters a and k, with a the

prior probability of an active effect and k the inflation factor of the

standard deviation produced by an active effect. To define a working range

for a1 and k, we have examined the results of several unreplicated

tractional factorials. For each example, an estimate of a was obtained as

-4-
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the proportion of effects declared significant by the author(s) of that

particular example, and k2 was estimated by the ratio of the mean squared

significant effect over the mean squared inert effect. These values are

presented in TaLle 1. The estimated values of a range between .13 and .27

with an average of about .20. Estimated values of k vary widely between 2.7

and 18 with an average of about 10.

The possibility of bias introduced by restricting attention to published

examples and by estimating a and k in this informal manner is

recognized. However, we show later that the conclusions to be drawn from our

analysis are usually insensitive to moderate changes in a and k and we

believe that little would be gained by attempting to be more precise.

TABLE 1.

Estimated values of a and k from published examples of
16 and 32 run two final designs taken from Box, Hunter and

Hunter (1978), Davies ed. (1954), Daniel (1976), Bennett and

Franklin (1954), Johnson and Leone (1964), and Taguchi and Wu

1980). In Daniel's example the analysis is conducted after

making a log transformation in the response.

BHH p. 398 16 .20 7.9

BHH p.32 7  16 .27 13.9

BHH p. 378 32 .16 11.0

Davies p. 274 16 .13 2.7

Davies p. 462 16 .27 7.1

Daniel p. 71 16 .20 13.0

BF p. 557 16 .27 18.0

JL p. 183 32 .13 3.2

JL p. 196 16 .27 9.5

Taguchi p. 69 16 .13 9.7
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4. SOME EXAMPLES

To illustrate the procedure we reanalyze four sets of data from various

sixteen-run two-level experiments which have appeared in the literature. In

each case the purpose of the analysis is to identify, on the hypothesis of

effect sparsity, which columns of the design are associated with effects

unlikely to be due to noise. Data from the four examples, labelled I, II, III

and IV, are presented in Table 2, which shows the experimental factors, the

responses, the column allocations to the 16 x 16 factorial array, and the

estimated effects.

In Figure 1 posterior probability plots are shown on the left and

Daniel's normal plots are shown on the right for each of the four examples.

For the posterior plots the numbers 1,2,...,15 on the horizontal scale refer

to the columns of the design. The solid zrez-e lines are posterior

probabilities, calculated from equation (2) with a = 0.2, k = 10. The line

on the number i is the probability that the ith column is associated with

an active contrast (whether arising from a single effect or from a linear

combination of effects corresponding to an alias string). The vertical line

on the number zero refers to the probability that there are no active

contrasts. The boxes on each line indicate the range of these probabilities

when a is varied over the range 0.1 < a < 0.3 and k is varied over the

range 5 < k < 15. For the normal plots on the right the horizontal scale

shows estimated effects and the vertical scale shows the normal score, and

each point is labelled with its associated column number.

Examples I, If, and III

(i) For examples I, II and III, consider first -the probabilities

obtained by setting a 0.2 and k = 10 shown by the solid lines. Most of

these probabilities are either rather small or else close to unity. This

-6-
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TABLE 2. DATA FROM FOUR 16-RUN TWO-LEVEL EXPERIMENTS

Example Source Design

I Daniel (1976) 24

11 Taguchi and Wu (1980) 2i9-

III Box, Hunter and Hunter (1978) 284

IV Davies (1954) 24

Factors Response

I Load (A) Flow (B) Speed (C) Mud (D) Log drill advance

II Rods (A) Period (B) Material (C) Thickness (D) Tensile strength

Angle (E) Opening (F) Current (G) Method (H)
Preheating (J)

III Temperature (T) Moisture (M) Holding pressure (H) Shrinkage
Thickness (V) Booster pressure (B) Cycle time (C)

Gate size (G) Speed (S)

IV Acid strength (A) Time () Amount of acid (C) Yield of isatin

Temperature (D)

Column allocation

I A a C D
II 0 H G -F A -E J 3 -C
111 -8 -T -M -V -H -B -C -G

IV A B C D
Response

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 I II III IV

1 * . - + + + - - + + - + - - + .23 43.7 14.0 .08
2 + - - - + + - - + + + + - - .30 40.2 16.8 .04
3 4 - + - + - + - + - + + - + - .52 42.4 15.0 .53

4 + + + -.. + + + + .54 44.7 15.4 .43

5 + - + + - - + - 4 - + + - .70 42.4 27.6 .31

6 + - + + - - . + + - - + + .76 45.9 24.0 .09
7 * - + - + - + + - + - + 1.00 42.2 27.4 .12

* + + + + . ... . .96 40.6 22.6 .36
9 - - + + + - 4 - - + + + - .32 42.4 22.3 .79

- - - - + + + + +- - - + .39 45.5 17.1 .68

It + + - + - 4 - + - + .61 43.6 21.5 .73
12 + --- - - 4 4 + + - - - .66 40.6 17.5 .08
13 + - + + - - + + - - + + - - + .89 44.0 15.9 .77

14 4 - + + - 4. + - - + 4 - - .97 40.2 21.9 .38
15 + -- + - + - + - + - + - + - 1.07 42.5 16.7 .49

16 4- , + + + + + 4 + + + + + + + 1.21 46.5 20.3 .23

. .( .25 -.01 .50 .00 -.02 .00 .14 .03 -.01 .02 .04 .02 .01 .02

I: 43.0 .13 -. 15 .30 .15 .40 -.03 .37 .4 -.0 .*2 .13 .13 -.37 2.15 3.10

Li 19.3 -. 6 -. 4 -. 6 4.6 .9 -. 2 -. 3 -1.2 .7 .1 .3 -5.5 3.8 .1 -. 6
IV 6.4 -.19 -.32 .00 -.08 .03 -.07 .15 .27 -. 16 -.2b -. 10 -.03 -.01 .12 .02
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EXAMPLE I
1.0 ............. .......... .................... 2 I I 1 94

02
1 0

0.5 .. .,........ I .......... ..................... 111,9.'

-- 1 2 3 4 5 6 7 8 9 10, 1 2 13 1415 -21 5t I .

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

estimated effectEXAMPLE Zr

0............................................. ...... o

I 100

0 - 11.04
1:12

9:5z

*ggggg~gJfrJ___________

0 1 2 3 4 5 6 7 8 9 10 11 Z 131415 2
1I 0 1 2 3 4

estimated effect
EXAMPLE 3rr

-2............ ............................ ..... 2 ' 1 1 -4 1

j013

2 403

Li -01 11

.............................................. 0 I *

45 01

-I3 -- o 15

-1 .9 o il

o,10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 -21
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.

estimated effect

Figure 1. On the left are posterior probability plots for a = 0.2,

k = 10. Boxes show ranges of probabilities over 0.1 < ai < 0.3,
5 < k < 15. on the right are corresponding normal probability plots.

TSR 02797: Figure 1, page 8, normal plot for ExaIple iV: the positive

contrast labelled 5 should be labelled 6.



suggests a division into "inert" and "active" contrasts wLtich seems to agree

well with the conclusions of the original authors and with a conmon sense

inspection of the normal plots.

(ii) For each of these examples the probability of :o active contrasts

is very small over the whole tested range of a and k. The changes

(indicated by boxes) that occur in the large probabilities and in trie rat:er

small probabilities when OL and k are each varied by factors of three, as

above, are usually rather small and not such as to change the conclusions

about active and inert effects. However larger variations occur for

intermediate probabilities (see, for example, contrast 1 in example I and

contrast 8 in example III) but again these are not such as to affect the

general conclusions and we discuss these further below.

Thus we should tentatively identify as associated with active contrasts:

example I: columns 2, 4 and, somewhat less certainly, 8

example II: columns 14 and 15

example III: columns 4, 12 and 13.

Example IV

This example has been chosen to illustrate what might be seen as a more

troublesome situation. The original authors conclu'ded by somewhat dubious usfe

of the analysis of variance that columns 8 and 10 are associated witi active

contrasts. Our analysis with a = 0.2 and k = 10 suggests the primary

possibility of no activity at all or an extremely weak -u,1estio of actlvty

for columns 8 and 10. Variation of a and k shows ttaL for this particuldi

set of data the probabilities are much more sensitive, parrictlai 1 , t, .imes

in j. To allow more detailed study analyses are shown in Fij ure 2 f-, il

combinations of 3 = (0.1, 0.2, 0.3) and k = (5, 10, 15j. In pdrtwu-uii It

will be seen that for a = 0.1, k = 15 there is a rather i, , i .IabiIity
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that no contrast is active. On the other hand for a = 0.3, k = 10 this

probability is small as the column contrasts 1, 7, 8, 9, 10, 11 and 14 all

idve posterior probabilities greater than 50%. The situation can be further

understood by studying the normal plot for this example (Figure 1). On the

one hand we can imagine drawing the "error line" through all the points and

thus associate all the contrasts with noise, on the other a line might be

drawn, through the center group (say 4, 6, 12, 2, 13, 3, 15, 5) and the

remainder, which are precisely the effects mentioned above, would then be

regarded as falling off the line.

We feel that for this example appropriate conclusions are as follows:

(i) It is impossible on the evidence of these data alone to draw

reliable inferences about active and inert contrasts: that is, to make

inferences which do not change under differing plausible model assumptions.

(ii) It is possible that certain active effects occur, particularly

those associated with some or all of columns 1, 7, 8, 9, and 10. If the

effects of the corresponding factors, of a size not ruled out by this

experiment, were of potential interest and the situation was sequential then

further experiments should be run to check out these possibilities. In these

further experiments

(a) some or all of the design points might be replicated. This

would simultaneously provide greater precision of the estimated effects and an

independent estimate of experimental error.

(b) some experiments might be run in which some or all of the ranges

of factor levels were widened.

The analysis of these data illustrates a point made by George Barnard

(Box (1980) discussion p. 404) that there exist robust and non-robust data

samples. That is to say, for certain sets of data, analyses ranging over a

* -11-



wide range of plausible assumptions lead to essentially the same conclusions,

while for other sets of data such conclusions are highly sensitive to

assumptions. Thus with the robust data of examples I, II and II variation of

' and k covering a wide range of plausible assumptions produces little

change in the conclusions. However with the non-robust data of example IV the

conclusions are much more sensitive to the assumptions.

An important part of modern statistical analysis made available by the

computer is aimed at revealing the state of robustness that occurs in any

qiven situation. At least for moderate sample sizes (such as i = 16) the

posterior probability calculations discussed here can be made rapidly to

provide visual displays of probability plots such as those in Figures 1-2 and

their sensitivity to changes in a and k can be readily explored. Such

sensitivity analysis enables one to decide whether reasonably reliable

conclusions are possible from present data or whether further experimentation

is needed.

5. DISTRIBUTION OF THE EFFECTS T

It is possible also, for given a and k, to obtain the posterior

distribution for each effect T. as a weighted sum of 2n-2 t-distributions1

together with mass 1 - pi at zero (see Appendix).

For the demonstrably active effects, 1 - pi will be close to zero and

the weighted sums of t-distributions would in particular provide Bayesian

intervals for these effects. Calculation of the complete posterior

distribution is cumbersome although it is well approximated in most cases by

summing those t-distributions with relatively large w-ights. Alternately for

many purposes the mean and standard deviation of the posterior distribution

would be adequate and these are more conveniently obtained.

-12-



APPENDIX

To obtain the posterior distribution of T), given a(r), write

p(Tja (r) T (r) ,0)

a Vexp{- [CT - tr)'(T - ) T'T - ' ) T(, ,

2a0 (r) (rC) r

p(T( ja ,,k) a (k2 _ 1)r/2-r exp{- I I )2T1 r) (

(r) (r) 2a k (

pCc) 1-

to give

P(T a ,T,k) f (k2 - l)-r/ 2 o-v-r-1exp{ - 1
(r'(r) 0 2a

[(T T )CT -T + TIT T T T do(r) Cr) (r) (r) (r) (r) 2 Cr) (r)

(k 2 - 1)-r/2[(T -[(r )'CT -(() +
Cr) Cr) Cr) Cr

-(v+r)

+TT-T' )T rT + 1 T r 2
Cr)TCr)TCr) k2 - C (

This can be rewritten to give

Tr OT Tr)'(T~r - OT~r ) - r

p(Tr a ,T,k)c [1 + ( Tr) Tr) (Tr(r (rT 2
(r) Cr) 4(T'T - O~T' )T )2

(r) Cr))

which implies the posterior distribution of TCr)' given a(r) is

multivariate t with V degrees of freedom, mean OT dispersion matrix

under a(r each of

SCr)

is distributed t for i e (r).

-13-
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The complete posterior distribution of T is then given by (see, e.g.,i

Box and Tiao (1968)),

p(tily,a,k) - p(Tify,a,k,a(r))p(a (r)lY,,k)(rr)

= (1 - i)I'[T =0] + p(Tily,ak,ar)P(a(r) ly,a,k)
I (r):i active
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